Transverse Single-Spin asymmetries for π + and π - production from pp collisions at $\sqrt{S_{NN}}$ = 200 GeV - Introduction - Measurements, Kinematic variables - Corrections and checks - Preliminary Physics results - Conclusion and Prospects F.VIDEBAEK #### Introduction $$A_n = (\sigma^+ - \sigma^-) / (\sigma^+ + \sigma^-)$$ Where the spin cross section is determined with the spin direction defined by $k_b \times k_{pi}$ - Early (naive) QCD predicted this effect to be small. - Non-zero Single Transverse Spin Asymmetry (SSA/ A_n) requires Spin Flip Amplitude and phase difference in intrinsic states. - Such studies may clarify properties of transverse quark structure of the nucleon. # **Background** Low energy data (FNAL E704) show clear differences between π^{+-} and π^{0} . D.L.Adams (E704) Phys.Lett B264,462(1991); Phys.Rev. D53, 4747 (1996). Recent STAR results on π^0 also shows a significant SSA/ $\textbf{A}_{\textbf{n}}$ at RHIC energies. # The BRAHMS Spectrometer #### **Event characterization** Global Detectors in use for luminosity measures, and inelastic pp cross section Triggers are defined with the CC,Inel ZDC and BB; p+p collisions were triggered with the INEL/CC detectors # **New Min-Bias Counter for pp** - "CC" Counter –Cherenkov Counter - Installed for pp05 - Covers ~70% of pp inelastic cross-section - Vertex resolution σ ~ 2cm #### Kinematic Variables - The kinematic variables of interest are Feynman x (x_F) and p_T. - Shown is the BRAHMS acceptance for the data taken at $\theta = 2.3 \deg$ and the maximum field setting (7.2 Tm). NOTE THE CORRELATION BETWEEN X_F AND P_T AS CHARACTERISTIC FOR A FIXED ANGLE SPECTROMETER. THE MOMENTUM RESOLUTION IS $\delta P = 1\%$ AT 22 # **BRAHMS** acceptance The acceptance is not straight in angle or η. Illustrated in this plot. Thus care should be taken when comparing to both other experiments (STAR) and to theory. # Determination of raw asymmetries. Asymmetries are determined from $A_n = \varepsilon / P$ The polarization P of the beam was ~42% in the RHIC Run-4 (Blue beam) With $\varepsilon = (N^+ - N^-) / (N^+ + N^+)$ where the yield of pions in a given kinematic bin with the beam spin direction is N^+ (up) and N^- (down). For non-uniform bunch intensities ``` \varepsilon= (N⁺/L⁺ - N⁻/L⁻) / (N⁺/L⁺ + N⁻/L⁻) = (N⁺ - L[*]N⁻) / (N⁺ + L[*]N⁻) where L = L⁺ / L⁻ ``` Since the up and down spin patterns alternate most time-dependent systematic errors are small. The main issue is determination of the L⁺ and L⁻. #### **Event Selection Criteria** - Clean track through spectrometer and in time with the RHIC 108 nsec clock. - Momentum determined from 3 measurements. - -40< Z_Vertex <30 (Vertex from collision) determined from global detectors (INL, BB, ZDC) - Track points to collision vertex (in Z and Y) - Good Bunches Only (selected per store) - Select pions using RICH for particle identification. #### Vertex determination - Vertex Calculated from timing measurements in sets of counters INEL position on each side of IP covering roughly 2 < |η| < 5.2. - Z-resolution is ~ 10 cm in Run-4 - The spectrometer accepts track weighted towards #### **Bunch Pattern Selection** - Bad bunches with different intensity outside norm is rejected. - L+/L- ~ 1.05-1.15 typical factors - Current run-5 have more systematic check with varying patterns. # **PID** using RICH MASS DETERMINED FROM MOMENTUM AND RADIUS MEASURED IN A RING IMAGING CHERENKOV COUNTER. THE PION IDENTIFICATION IS CLEAN UP TO 35 GEV. MEASURED RADIUS VS. CALCULATED SHOWING THE SELECTED PIONS # Yields that can be used for analysis | | positiv | negativ | |--------|---------|---------| | | е | е | | pion | 219K | 216K | | kaon | 46K | 26K | | proton | 165K | 17K | Integrated yields of π ,K and proton in x_F range 0.15-0.35 # Data of A_N for π^+ and π^- POLARIZATION WAS ~42% FOR π^{+} MEASUREMENTS AND ~38% FOR π . SYSTEMATIC SCALE **ERROR ON P ~ 20-30%.** WILL IMPROVE FINAL FINAL ANALYSIS OF CNI AND GAS JET DATA. $A_N = +0.05 + -0.005 + -0.015$ in 0.17 < x_F < 0.32 $$A_N = -0.08 + -0.005 + -0.02$$ in $0.17 < x_F < 0.32$ # π and π with yellow Polarization pattern. This corresponds to negative X_F , and is consistent as expected. #### THE PROTON AN IS ALSO CONSISTENT WITH 0. # TWIST 3 (INITIAL STATE) CALCULATIONS BY J.QIU AND G.STERMAN, PHYS.REV.D59,014004(98) EXTRAPOLATED TO LOWER P_T # Comparison to data within acceptance. SSA CALCULATIONS BY U.ALESIO & F.MURGIA PRD70,074009(04); HEP-PH/0412317 & PRIVATE COMM. PQCD APPROACH, INCLUDING SIVERS FUNCTIONS DETERMINED FROM THE E704 DATA. ASYMMETRY FOR PI+,PI-. DATA INDICATES THE OPPOSITE TREND. #### **Current RHIC Run** - RHIC Run-5 is just underway. - Increased luminosity - Polarization ~45-55% - New vertex detector with $\sigma_7 \sim 2$ cm. - Additional bunch luminosity measures. # **Preliminary Run-5 Data** - Very preliminary data from Run-5 confirms the run-4 measurements. - Data from just 1(2) stores. Total statistics ~10-20 times this. # P_T-x_F acceptance THE MEASUREMENTS AT 4 DEG IN ADDITION TO 2.3 DEG WILL ALLOW FOR SOME P_T COVERAGE. # **Expectations for 4 deg** Statistics obtained for one run #### **Conclusions** - BRAHMS has obtained the first preliminary result for single spin asymmetries for π^+ and π^- in 200 GeV pp collisions at RHIC in the x_F range of 0.17 to 0.32. - The A_N value for π^+ and π^- are significantly different with opposite sign, and the π^- < 0 at ~ 3 sigma level and π^+ >0 at ~ 1.5 sigma level - The sign of A_n is consistent with behavior from lower energy. - A_n at negative x_F for π^+ and π^- are consistent with 0 (as also found by STAR for π^0) - The protons are found to have A_N ~0 ### **Summary** ■ The ongoing Run-5 should enable BRAHMS to extend the measurements to x_F ~ 0.45 and to get some information on p_T-dependence at x_F~0.25 RICH operating mode was be changed to get K+/K- out to about 35 GeV/c (x_F ~ 0.4) Fig. 4. Predicted single spin asymmetries for the process $p^+p \rightarrow KX$, with the set of kaon FF's BKK1 [19]; kinematical conditions are the same as for the pion case, at $p_T = 1.5$ GeV/c. The solid, dashed, dot-dashed, double dot-dashed curves refer respectively to the K^+ , K^- , K^0 , K^0 , acses. Results for \overline{K}^0 meson are very similar to those for K^- case. #### The BRAHMS Collaboration #### - 12 institutions- ``` I.Arsene¹⁰,I.G. Bearden⁷, D. Beavis¹, S.Bekele, C. Besliu¹⁰,, B. Budick⁶,H. Bøggild⁷,C. Chasman¹, C. H. Christensen⁷, P. Christiansen⁷, J.Cibor⁴,R.Debbe¹, E.Enger,J. J. Gaardhøje⁷, M. Germinario⁷, K. Hagel⁸, H. Ito¹, A. Jipa¹⁰, E.B.Johnson, J. I. Jordre¹⁰, F. Jundt^{2,} C.E.Jørgensen⁷, R.Karabowisz, E. J. Kim⁵, T. Kozik³, T.M.Larsen¹², J. H. Lee¹, Y. K.Lee⁵,S.Lindahl, R.Lystad, G. Løvhøjden², Z. Majka³, M. Murray⁸, J. Natowitz⁸,B.S.Nielsen⁷, D. Ouerdane⁷, R.Planeta⁴, F. Rami², D. Roehrich⁹, C.Ristea, O.Ristea, B. H. Samset¹², S. J. Sanders¹¹, R.A.Sheetz^{1,} P. Staszel⁷, T.S. Tveter¹², F.Videbæk¹, R. Wada⁸, H.Yang, Z. Yin^{9,} I. S. Zgura¹⁰ ``` ¹Brookhaven National Laboratory, USA, ²IReS and Université Louis Pasteur, Strasbourg, France ³Jagiellonian University, Cracow, Poland, ⁴Institute of Nuclear Physics, Cracow, Poland ⁷Niels Bohr Institute, Blegdamsvej 17, University of Copenhagen, Denmark ⁸Texas A&M University, College Station. USA, ⁹University of Bergen, Norway ¹⁰University of Bucharest, Romania, ¹¹University of Kansas, Lawrence, USA ¹² University of Oslo Norway # What is sensitivity to fragmentation. FROM SAME PAPER: SSA CALCULATIONS BY U.D'ALESIO & F.MURGIA PRD70,074009(04); SMALL DIFFERENCES- POSSIBLY NOT DISTINGUISHABLE WITHIN OUR DATA STAT AND SYSTEMATIC. FOR STAR KINEMATIC ACCEPTANCE. # π + ε vs. x_F * 100 $<\epsilon>\sim +0.022 => A_N = +0.05 +- 0.005 +-$ [0.015] in 0.17 < x_F < 0.32 # π^- ε vs. $x_F * 100$ $<\epsilon>\sim -0.035 => A_N = -0.08 + -0.005 + -$ [0.02] in $0.17 < x_F < 0.32$